Hitting the Streets: Bike Commuting Injuries in PDX

William Lambert, Melissa Hoffman, Ellen Peck, and John Mayberry

Oregon Health & Science University Portland, OR

Conflict of Interest Disclosure

I and my co-authors have NO financial relationship to disclose.

Biking – everybody, who is anybody, is doing it! And some wear helmets!

Commuting by bike differs from other types of riding

Cities across the country are investing millions in infrastructure and upkeep

Combined Bicycle Traffic over Four Main Portland Bicycle Bridges Juxtaposed with Bicycle Crashes

Extrapolated from peak period counts

Year

[&]quot;Crash Rate" represents an indexing of annual reported crashes to daily bicycle trips across the four main bicycle bridges.

^{*2008, 2009} Reported Bicycle Crashes data reflects increased crash reporting requirements.

City of Portland Bicycle Counts by Year By Helmet Use

without helmets

■with helmets ■

Specific Aims

- 1. Determine the incidence of injury events
- 2. Define bike commuter (rider) characteristics associated with injury events
- 3. Characterize the environmental factors associated with injury events

Outcomes

Injury Event =

any cycling event leading to injury

Serious Injury Event =

an injury event requiring medical attention

Recruitment of Riders

Advertising and invitation

- BTA Bike Commute Challenge Aug-Sept 2007
- websites, e.g., <u>bikeportland.org</u>

Inclusion criteria

- At least 18 yrs old
- Self identify as a bike commuter
- Commute to work or school within PDX city limits
- Access to the Internet
- Accessible via email
- Ability to complete surveys written in English

Human Subjects Protection

- Approved by OHSU IRB
- On-line consent

Prospective Cohort Design

Prospective Data Collection

Monthly Questionnaire

- Sent on first day of each month
- Survey Monkey open for 8 days
- Reminder emails on 5th and 8th days
- Previous month's commute
 - Frequency, distance, changes in route
- If injury event, then circumstances and outcome
 - Type and extent of injuries, hospital admission, length of stay, time lost from work/school
 - Light, weather, surface, vehicles

The Cohort

- Online recruitment and consent obtained = 1034
- 980 completed the Initial Questionnaire (95%)
- Only 18 did not respond to any of the monthly questionnaires (excluded from analysis)
- 42% provided 12 months of data
- 72% provided at least 10 months of data
- 9,492 person months (average 9.9 per commuter)

Cohort Characteristics

- 48% Female
- Age 36.7 years
- BMI 24.1
- Bike commuting experience

– Beginner 23%

Intermediate 27%

Experienced 50%

Safety Practices

• Helmet 95%

• Lights in dark 96%

• Reflecting clothes 60%

• Mirrors 19%

• Prior injury event 44%

The Average Commute

Distance, roundtrip

- 11.2 miles
- Time on current route 42 months

- 91% use bike lanes
- 54% use residential streets
- 94% encounter a major street

Risk of Injury

Injury events = 192 (164 riders (18%))

15.0 per 100,000 miles (95% CI 13.2 – 17.5)

Serious injury events = 50 (49 riders (5%))

3.9 per 100,000 miles (95% CI 2.9 – 5.1)

Lay Language

"1 in 5 bike commuters will experience an injury per year"

"the typical bike commuter will have an injury once every 5 years"

"¼ of injuries will require medical attention"

Types of Injuries

Injury events involving head, face, abdomen, and spine are more likely to be "serious" ($p \le 0.05$)

Associations

Injury Events

- NO association
 - Gender
 - Age
 - BMI
 - Prior injury event
 - Routinely wear helmet
 - Reflective clothing
 - Mirror
- Association
 - Longer commute distance 12.1 v 11.0 miles (p = 0.04)

Serious Injury Events

- NO association
 - Gender
 - Age
 - Prior injury event
 - Helmet
 - Reflective clothing
 - Mirror
 - Commute distance
- Associations
 - Routinely wear helmet 88% v 96% (p = 0.01)
 - Higher BMI
 - -22.7 v 23.6 (p = 0.07)

Classification of Commuter Skill Level

BEGINNER

 Less than 9 months, regardless of number of days commuting per week

INTERMEDIATE

 ≥ 3 days per week for more than 9 months during the previous year

EXPERIENCED

 — ≥ 3 days per week for more than 9 months per year during the previous 3 years

Incidence of injury and serious injury events (per 100,000 miles commuted)

Trauma and Serious Trauma Events per 100,000 miles travelled

Monthly incidence of injuries

Injury Events per 100,000 miles travelled

Environmental and Roadway Surface Conditions

- 29% injury and 48% serious injury events involved a motor vehicle
- 20% of injury and serious injury events involved poor roadway surface conditions
 - Steel plates
 - Loose gravel
 - Tracks on road

Injury events by location type

Keep wearing your helmet!

- Helmets were associated with a lower risk of serious injury
- Unadjusted OR = 0.32
 (95% CI 0.12 0.89)
- This 70% reduction is comparable to benefits quantified in previous research

Limitations

- Generalizability
 - Experienced riders; may not include lower SES;
 extensive bicycle infrastructure; rainy climate
- Measurement accuracy
 - Riders recalled information
- No comparisons made to circumstances of "injuryfree" rides
 - Next study will use "case-crossover" design

Conclusions

1. Injury rates are low

(1x every 5 years)

- Small increased risk of injury for new riders (should not be afraid to start)
- Helmets are highly protective of serious injury (70% reduction)

Acknowledgments

- Bicycle Transportation Alliance
- Portland Bureau of Transportation
- Local bike shops
- Portland bike commuters
- The OHSU Center for Healthy Communities

Thank you! Questions?

Bill Lambert lambertw@ohsu.edu

Journal of Trauma 2010; 69:1112-1119

Bike and Pedestrian Fatality Trends

Motorist Fatal Motorcycle Fatal Bicyclist Fatal Pedestrian Fatal All Fatalities

1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
37	31	25	19	14	20	24	24	26	19	18	14	11	9	7
4	4	5	3	3	1	5	4	1	4	4	5	4	9	4
1	5	3	0	0	5	0	4	1	4	0	6	0	4	0
17	9	13	15	10	10	11	15	9	7	6	11	5	11	15
59	49	46	37	27	36	40	47	37	34	28	36	20	33	26

TRAFFIC FATALITIES IN PORTIAND by mode of travel

