Probabilistic Data Linkage: Basic Methods and Applications

Lawrence Cook, MStat, PhD
Department of Pediatrics
Division of Critical Care
University of Utah
Crash Outcome Data Evaluation System (CODES)

- Initiated in 1992 by the US National Highway Traffic Safety Administration (NHTSA)
- Are safety belts and motorcycle helmets effective at preventing injuries resulting from motor vehicle crashes?
Crash Database

- **Crash**
 - Date, time, crash type
- **Drivers and vehicles**
 - Speed, contributing factors, violations
- **Occupant**
 - Age, gender, seating location, belt usage
- **No medical information about occupants**
EMS Database

- Patient
- Time
- Scene
- Procedures
- Treatments
- Medications
- No information once dropped off at hospital
ED Database

- Patient
- Time
- ICD-9, Procedures, and E Codes
- ED Charges
- No information once admitted to hospital
- No information prior to arrival at ED
Inpatient Database

- Patient
- Time
- ICD-9, Procedures, and E Codes, ISS
- Hospital Charges
- No information prior to admission to hospital
Crash → Analysis Database → ED
EMS → Analysis Database → Inpatient
Benefits of Safety Belts

- Odds of being admitted or dying
 - 4.3 – 6.5 times higher if not belted
- Odds of emergency department or worse
 - 2.8 – 3.5 times higher if not belted
- Odds of any injury
 - 1.9 – 4.1 times higher if not belted
- Hospital charges for unbelted
 - 55% increase among hospitalized persons
 - 400% increase among all persons
Probabilistic Linkage

- Probabilistic linkage is a method that uses properties of variables common to databases to determine the probability that two records refer to the same person and/or event.
Let’s Play 20 Questions

I’m thinking of a person
Record Linkage with Imperfect Data

Crash Record

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>DOB</th>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Seat</th>
<th>Belt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Smith</td>
<td>F</td>
<td>05/05/45</td>
<td>07/15/10</td>
<td>11:40</td>
<td>Weber</td>
<td>US5</td>
<td>N</td>
</tr>
</tbody>
</table>

Hospital Record

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>DOB</th>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Diagnosis</th>
<th>Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Smith Sanchez</td>
<td>F</td>
<td>05/05/44</td>
<td>07/15/10</td>
<td>11:51</td>
<td>Weber</td>
<td>Fracture</td>
<td>Mem Hosp</td>
</tr>
</tbody>
</table>
Probabilistic Linkage Theory

Reliability (m)

Probability that a common variable agrees on a matched pair.
Approximately 1 - error rate.

Discriminating Power (u)

Probability that a common variable agrees on an unmatched pair.
Approximately the probability of agreeing by chance.
Probabilistic Record Linkage

Crash Record
Mary Smith F 05/05/45 07/15/10 11:47 Weber US5 Seat=1 Belt=N

Hospital Record
Mary Smith Sanchez F 05/05/44 07/15/10 11:55 Weber Fracture Mem Hosp

Probability of true match = 0.0009
Probabilistic Record Linkage

Crash Record

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>DOB</th>
<th>Date Input</th>
<th>Time Input</th>
<th>Location</th>
<th>Seat</th>
<th>Belt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Smith</td>
<td>F</td>
<td>05/05/45</td>
<td>07/15/96</td>
<td>11:47</td>
<td>Weber</td>
<td>US5</td>
<td>Seat=1 Belt=N</td>
</tr>
</tbody>
</table>

Hospital Record

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>DOB</th>
<th>Date Input</th>
<th>Time Input</th>
<th>Diagnosis</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Smith Sanchez</td>
<td>F</td>
<td>05/05/44</td>
<td>07/15/96</td>
<td>11:55</td>
<td>Fracture</td>
<td>Mem Hosp</td>
</tr>
</tbody>
</table>

Probability of true match = .0192
Probabilistic Record Linkage

Crash Record

Mary Smith F 05/05/45 07/15/96 11:47 Weber US5 Seat=1 Belt=N

Hospital Record

Mary Smith Sanchez F 05/05/44 07/15/96 11:55 Weber Fracture Mem Hosp

Probability of true match = .0385
Probabilistic Record Linkage

Crash Record

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>DOB</th>
<th>Date of Incident</th>
<th>Seat</th>
<th>Belt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Smith</td>
<td>F</td>
<td>05/05/45</td>
<td>07/15/96</td>
<td>1</td>
<td>N</td>
</tr>
</tbody>
</table>

Hospital Record

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>DOB</th>
<th>Date of Incident</th>
<th>Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Smith Sanchez</td>
<td>F</td>
<td>05/05/44</td>
<td>07/15/96</td>
<td>Mem Hosp</td>
</tr>
</tbody>
</table>

Probability of a true match = 0.1429
Probabilistic Record Linkage

Crash Record

Mary Smith F 05/05/45 07/15/10 11:47 Weber US5 Seat=1 Belt=N

Hospital Record

Mary Smith Sanchez F 05/05/44 07/15/10 11:55 Weber Fracture Hosp

Probability of a true match = 0.9836
Probabilistic Record Linkage

Crash Record
Mary Smith F 05/05/45 07/15/10 11:47 Weber US5 Seat=1 Belt=N

Hospital Record
Mary Smith Sanchez F 05/05/44 07/15/10 11:55 Weber Fracture Mem Hosp

Probability of a true match = 0.9817
Probabilistic Record Linkage

Crash Record

Mary Smith F Weber US5 Seat=1 Belt=N

Hospital Record

Mary Smith Sanchez F Weber Fracture Mem Hosp

Probability of a true match = 0.9999
Probabilistic Record Linkage

This pair of records has both agreements and disagreements. Our calculations say that the odds are $p = 0.9999$ that the records refer to the same individual and crash event.
Research Studies
Impact of Passengers on Crash Outcomes of Teenage Drivers?

Motor Vehicle Crash Hospital Discharge Vital Records
Risk of Hospitalization or Death to the Teenage Driver

<table>
<thead>
<tr>
<th></th>
<th>Teens Odds Ratio</th>
<th>Adults Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any passenger vs. alone</td>
<td>1.7 (1.4,2.2)</td>
<td>1.3 (1.2,1.4)</td>
</tr>
<tr>
<td>1 passenger vs. alone</td>
<td>1.6 (1.3,2.1)</td>
<td>1.3 (1.1,1.4)</td>
</tr>
<tr>
<td>≥ 2 passenger vs. ≤ 1</td>
<td>1.6 (1.2,2.1)</td>
<td>1.2 (1.1,1.4)</td>
</tr>
<tr>
<td>≥ 3 passenger vs. ≤ 2</td>
<td>1.7 (1.2,2.4)</td>
<td>1.1 (1.0,1.3)</td>
</tr>
<tr>
<td>≥ 4 passenger vs. ≤ 3</td>
<td>1.9 (1.2,3.2)</td>
<td>1.3 (1.1,1.7)</td>
</tr>
<tr>
<td>≥ 5 passenger vs. ≤ 4</td>
<td>2.5 (1.1,5.6)</td>
<td>1.8 (1.3,2.6)</td>
</tr>
</tbody>
</table>
What types and how many injuries will occur in shop class over a one year period?

Student Injury Reports
Emergency Department
Hospital Discharge
Shop Class Injuries

One-year ED
- 167 in class injuries
- 45 seen at ED
- \(\frac{1}{2} \) were saw related
- Open wounds, 64%
- Fractures, 9%
- 2 amputations
- $16,571 ED charges

Five-years Inpatient
- 1,008
- 7 admitted
- 6 table saw related
- 3 amputations
- 2 open wound with tendon damage
- $26,767 hospital charges
Repeat Patients to the Emergency Department

Unduplication of three-years of emergency department data
Findings

- 1.37 million visits by 780,000 patients
- Repeat and frequent users account for 1/3 of patients by 2/3 of visits
- Patients attending five or more EDs were more likely to not have insurance
- 1/3 of serial users (≥ 5 visits) in year remained serial users the next year
Defining Serious Injuries for Motor Vehicle Crashes
Crash View of Injuries

- **KABCO**
 - K or killed within 30 days of the crash date
 - A or incapacitating injury
 - B or non-incapacitating injury
 - C or possible injury
 - O or no injury

- Assigned by investigating officer at the crash scene
Serious Injury Rates

- Serious = K or A injuries
- Can serious injury rates be measured similarly across states or over time?
- Case study – Utah
 - Complete redesign of crash report in 2006
 - New definitions for KABCO
<table>
<thead>
<tr>
<th>Utah KABCO</th>
<th>Pre 2006</th>
<th>Post 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>K – Fatal</td>
<td>K – Fatal</td>
<td></td>
</tr>
<tr>
<td>A – Broken bones & bleeding</td>
<td>A – Incapacitating injury</td>
<td></td>
</tr>
<tr>
<td>B – Bruises & abrasions</td>
<td>B – Non-incapacitating injury</td>
<td></td>
</tr>
<tr>
<td>C – Possible injury</td>
<td>C – Possible injury</td>
<td></td>
</tr>
<tr>
<td>O – No injury</td>
<td>O – No injury</td>
<td></td>
</tr>
</tbody>
</table>
Methods

• Remove all non-injured occupants
• Compare distribution of K, A, B, C injuries before and after crash report change
• Will there be a difference?
Can Hospital Files be Used to Measure Serious Injury Rates?

- Examine an injury severity measure based on hospital information
- Consider non-linked occupants as uninjured
- Maximum Abbreviated Injury Scale (MAIS)
Severe Injury – Medical Record

- MAIS
 - 1 – Minor
 - 2 – Moderate
 - 3 – Serious
 - 4 – Severe
 - 5 – Critical
 - 6 – Not survivable

- Derived from ICD-9 codes using ICDMap90
Summary

• Does wording on crash report matter?
 – KABCO distribution appears to change
 – MAIS remained more consistent

• Extend study to multiple states
Multi-State Analysis
Comparing Serious Injury Rates Across US States

- States determine the reporting criteria for motor vehicle crashes
 - Monetary
 - Injury

- States also control
 - Design and format of crash report
 - Definitions of fields on crash report
Crash Severity of Injury

<table>
<thead>
<tr>
<th>State A</th>
<th>State B</th>
</tr>
</thead>
<tbody>
<tr>
<td>• K – Fatal</td>
<td>• K – Fatal</td>
</tr>
<tr>
<td>• A – Incapacitated</td>
<td>• A – Life Threatening</td>
</tr>
<tr>
<td>• B – Visible Injury</td>
<td>• B – Serious</td>
</tr>
<tr>
<td>• C – Momentary unconsciousness/Complaint of</td>
<td>• C – Complaint of Pain</td>
</tr>
<tr>
<td>pain</td>
<td></td>
</tr>
<tr>
<td>• O – No injury</td>
<td>• O – No injury</td>
</tr>
</tbody>
</table>
Methods

- Collected data from 11 states from crash years 2005 to 2008
- Remove all non-injured occupants
- Compare distribution of K, A, B, C injuries
KABCO by State
MAIS by State

[Bar chart showing the percentage distribution of MAIS by state for A to J, with different colors representing different severity levels: 6, 5, 4, 3, 2.]
Summary

• A lot of variation between severity of injury coding on state crash reports
• Using MAIS helps to smooth the injury distribution
• More research needed
More Linkage Studies

- Crash to birth certificates
- Crash to bankruptcy
- Poison control to hospital and death
- EMS to hospital, trauma, and death
- Endotracheal intubation outcomes
What Do You Need For Probabilistic Linkage
Data Files

- Data use agreements
- Institutional Review Board (IRB) Approvals
- Memoranda of understanding
- Variables common to both files
Linkage Variables

- Many levels
- Observations spread throughout levels
- Reasonable accuracy
- Mix of person and event information
- Variable definitions same on each file
- Missing values represented by NULL
Common Linkage Variables

First and Last Names

Soundex of Names (Sounds like)
 - Lawrence Cook = L652 C200
 - Laurence Cooke = L652 C200

Date of Birth and Age

Incident Date

Time of Incident

Location: County, City, Zip, Latitude/Longitude
Are Names Necessary for Probabilistic Linkage?
Name Dilema

- Names are powerful identifiers
- Confidentiality concerns
- Names may not be collected in database
- Simulation study to determine effect of name information on linkage projects
 - We know the answers
Linkage Performance Measures

• Sensitivity - Ability to recognize true matches
 % of true matches identified

• Specificity - Ability to recognize incorrect matches
 1 – false positive rate
DOB, Gender, County, Time, Incident Date

Sensitivity

Specificity

Error Rate

NAME

SOUNDEX

INITIALS

NO NAME INFO

Sensitivity Specificity

No Errors 1% 5% 10% 25%

No Errors 1% 5% 10% 25%
Summary

• Is name information necessary?
 – If many non-name identifiers are available then name information may not be needed
 – If few non-name identifiers are available then name information becomes crucial

• Linkage feasibility test
Other Linkage Considerations

• Confidentiality concerns
 – IRBs & data sharing/use agreements
 – Separate tables of identifiers

• Databases
 – Missingness and accuracy of matching fields
 – Timeliness

• Analysis
Probabilistic Linkage Software

- LinkSolv
- Link Plus (CDC)
- Link King
- RecordLinkage (R)
- FRIL
- FEBRL
- Write your own
 - *Handbook of Record Linkage Methods for Health and Statistical Studies*, Howard Newcombe
Software Checklist

- Size of databases
- Add custom variable types and comparisons
- Unduplication / self match
- Link more than two files
- Training and documentation
Questions?

Larry Cook
larry.cook@hsc.utah.edu
801-585-9760
295 Chipeta Way
PO Box 581289
Salt Lake City, UT 84158-0289