# Water Insecurity in Oregon

## Water System Nitrate Levels & Social Disparities October 11, 2021



Environmental Public Health Cordelia Schimpf & Curtis Cude



## WATER INSECURITY LITERATURE

#### **DATA COLLECTION EVIDENCE**

- Socioeconomic status, race/ethnicity and drinking water violations
- Water service access
  - Water service reliability

#### **INDICATORS**

Water Poverty Index

Framework to evaluate human right to water (California)

#### **METHODS**

- Household Water insecurity
- Water scarcity variability mapping
- Safe Drinking Water Act exceedance and compliance mapping (California)

**STEP 1** 

#### POLICY

 California Human Right to Water (Assembly Bill 685, 2012)

Developing the evidence base Quantifying the burden of water insecurity

## **Contaminated Drinking Water and Social Disparities**



**NATIONAL STUDY** (Schaider et al., 2019)

> 5.6 million Americans are served by a community water system (CWS) with average nitrate concentrations ≥ 5 mg/L NO<sub>3</sub>-N

 Percent of Hispanic residents served by each system was significantly associated with nitrate

## **Contaminated Drinking Water and Social Disparities**



### **SAN JOAQUIN VALLEY** (Balazs et al., 2011)

- Proportion of Hispanic residents is associated with an increase in CWS average nitrate concentrations
- Home Ownership increases associated with lower levels of nitrate

## **Contaminated Drinking Water and Social Disparities**



### OREGON

- - Arsenic exposure 10 ppb in CWSs
  - 35% were of Hispanic origin
    - statewide average: 8% in yr 2000
  - Lower median household income and median age
  - Higher % of residents who spoke a second language at home compared to statewide average

(Stone, Sherman and Hofeld, 2007)

### **OBJECTIVES**



1) Characterize inequities among residents served by CWSs and non-EPA (NP) state-regulated systems with higher nitrate concentrations



#### 2)Inform Oregon water insecurity policy development

### **HYPOTHESIS**



#### **Higher nitrate levels in:**

CWSs serving a higher proportion of Hispanic residents

communities with low home ownership rates

smaller systems, including non-EPA systems

## NITRATE (NO<sub>3</sub>-N)



#### CAUSES

### REGULATION

#### Human-caused above 2 mg/L

Human-caused sources: runoff from fertilizer-use, leaking septic tanks and sewage

EPA maximum contaminant level (MCL) is 10 milligrams per liter (mg/L) or 10 parts per million (ppm)

### **HEALTH OUTCOMES**







Methemoglobinemia or "blue baby syndrome"

Thyroid disfunction

Negative outcomes





reproductive

Certain cancers (e.g. stomach, bladder cancer)

### **TARGET POPULATION: WATER SYSTEMS**

### **COMMUNITY WATER SYSTEMS**

- 15 or more service connections
- 25 or more year-round residents
- System size range from very small to very large

- SYSTEMS,

## **STATE-REGULATED NON-EPA (NP)**

4-14 or more service connections

10-24 a day for at least 60 days a year

System size very small

### **MOBILE HOME PARKS (MHP)**





### OREGON

- 1,065 MHPs serving 296,683 residents
- Half need infrastructure repair
- Construction regulation: 1976
- 47% built before 1980

### **MEDIAN HOUSEHOLD INCOME**

- MHP owners: \$38,466
- All homeowners: \$72,519 (2019)





### **MHPs and CWS**

- 18% are CWSs with their own water source
- Very small or small systems serving 22,604 people

### METHODOLOGY



### NITRATE CATEGORIES (NO<sub>3</sub>-N) •low (< 5 mg/l) •Medium (5 mg/l to 10 mg/l) •high (> 10 mg/l)

### SYSTEM SIZE CATEGORIES

- very small ( $\leq 500$  people)
- **small** (501-3,300)
- medium (3,301-10,000)
- Iarge (10,000 -100,000)
- very large (> 100,000)

### **MEASUREMENTS**

#### **THREE MEASURES**

a) Average nitrate concentrations for each CWS

a) Potentially Exposed Populations (PEP) to three nitrate levels  $PEP = \sum_{i=1}^{n} [(X_i \times S_{il} / S_{it})]$ 

b) Areal weighting to estimate CWS demographics of 132 out of 816 systems Areal based weight =  $\left(\sum_{j=1}^{j=n} \left[ (x_j/X_j) * p_j \right] / \sum_{j=1}^{j=n} \left[ (x_j/X_j) * P_j \right] \right) * 100$ 



### **ANALYSIS 1: CWS CHARACTERISTICS**

#### POTENTIALLY EXPOSED POPULATIONS TO THREE NITRATE CATEGORIES BY SYSTEM SIZE

| Characteristics                         | All Systems<br>(n= 816) | Very Small<br>(n= 582) | Small<br>(n= 139) | Medium<br>(n= 50)  | Large<br>(n= 41)     | Very large<br>(n=4)  |
|-----------------------------------------|-------------------------|------------------------|-------------------|--------------------|----------------------|----------------------|
| Population<br>Served (%)                | 3,283,658               | 81,029 (2.47)          | 211,605 (6.44)    | 301,449<br>(9.18)  | 1,317,747<br>(40.13) | 1,371,828<br>(41.77) |
| Average Nitrate<br>(NO <sub>3</sub> -N) | 0.91                    | 1.02                   | 0.71              | 0.66               | 0.39                 | 0.11                 |
| PEP low (%)<br>(< 5 mg/L)               | 3,262,268 (99.35)       | 79,026 (97.53)         | 205,713 (97.22)   | 291,594<br>(96.73) | 1,314,107<br>(99.72) | 1,371,828<br>(100.0) |
| PEP medium<br>(%)<br>(5 to 10 mg/L)     | 21,325 (0.65)           | 1,938 (2.39)           | 5,892 (2.78)      | 9,855 (3.27)       | 3,640 (0.28)         | 0 (0)                |
| PEP high (%)<br>(> 10 mg/L)             | 65 (0.00)               | <b>65</b> (0.08)       | 0 (0.00)          | 0 (0.00)           | 0 (0.00)             | 0 (0.00)             |

 CWS nitrate concentrations are higher in very small and small systems  Very small to medium systems have a higher percentage of residents who are exposed to nitrates > 5mg/L

### **ANALYSIS 1: CWS CHARACTERISTICS**

| <b>MOBILE HOME PA</b>                                                                                                    | POTENTIALLY EXPOSED POPULAT                 |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Characteristics                                                                                                          | MHPs<br>(n=173)                             |
| Population Served (%)                                                                                                    | 19,165 (0.58)                               |
| Average Nitrate<br>(NO <sub>3</sub> -N)<br>PEP low (%)<br>(< 5 mg/L)<br>PEP medium (%)<br>(5 to 10 mg/L)<br>PEP high (%) | 1.47 mg/L<br>17,772 (92.73)<br>1,328 (6.93) |
| (> 10 mg/L)                                                                                                              | 05 (0.54)                                   |

MHPs have higher average nitrate concentrations than other types of systems

#### **IONS: JUNITY WATER SYSTEMS** All OTHER CWSs (n=643)

3,264,493 (99.42)

0.76 mg/L

3,244,496 (99.39)

19,997 (0.61)

0 (0.00)

 MHPs have a higher % of residents exposed to nitrate concentrations > 5mg/L

### **ANALYSIS 1: Non-EPA SYSTEM CHARACTERISTICS**

#### **POTENTIALLY EXPOSED POPULATIONS: NON-EPA (NP), STATE REGULATED WATER SYSTEMS**

| Characteristics             |  |
|-----------------------------|--|
| Population Served (%)       |  |
| Average Nitrate             |  |
| (NO <sub>3</sub> -N mg/L)   |  |
| PEP low (%)                 |  |
| (< 5 mg/L)                  |  |
| PEP medium (%)              |  |
| (5 to 10 mg/L)              |  |
| PEP high (%)<br>(> 10 mg/L) |  |

The PEP estimates showed no exposure to nitrate concentrations over the MCL



No particular type of NP system was disproportionately impacted by higher nitrate levels

#### **NITRATE LEVELS**



#### **Oregon Community Water Systems**

Average Systemwide Nitrate Concentrations (NO3-N)

- Low <5 mg/L Nitrate (NO3-N)</li>
- Medium 5-10 mg/L Nitrate (NO3-N)
- Counties

### **ANALYSIS 2: NITRATE CONCENTRATIONS ≥5**

#### **LOGISTIC REGRESSION:** LIKELIHOOD OF NITRATE CONCENTRATIONS ≥5 mg/L. (N= 816)

| Variables                   | B         | SEB  |
|-----------------------------|-----------|------|
| Constant                    | -5.428*** | 0.54 |
| Agricultural Land %         | 0.51**    | 0.02 |
| MHP                         | 2.252***  | 0.51 |
| <sup>a</sup> All Other CWSs | -2.252*** | 0.51 |

Note: <sup>a</sup> We ran a separate analysis with all other types of CWSs as a reference group. \*p<.05.\*\*p<.01.\*\*\*p<.001.

#### Agriculture

Each 1% increase in agricultural land led to a 5.3% increase in the odds of a system having ≥5 mg/L nitrate concentration.



#### **MHPs**

The odds of a MHP having an average systemwide nitrate concentration  $\geq 5 \text{ mg/L}$  were 9.5 times higher than other system types.

### **ANALYSIS 2: CWS DEMOGRAPHICS**

#### **COMMUNITY WATER SYSTEMS AND DEMOGRAPHICS (N=132)**

| Variables                            | Mea        |
|--------------------------------------|------------|
| Average Nitrate (NO <sub>3</sub> -N) | C<br>((    |
| Hispanic/Latino %                    | ( <u>C</u> |
| People of Color %                    | (1.        |
| White (Non-Hispanic) %               | (7         |
| Home Ownership %                     | (64        |

#### an (95% Cls)

```
0.70 mg/L
(0.51-0.90)
11.40
(9.42-13.39)
17.88
(15.81-19.95)
78.49
(76.23-80.71)
66.85
(65.05-68.66)
```

### **ANALYSIS 2: CWS DEMOGRAPHICS**

#### **POTENTIALLY EXPOSED POPULATIONS & CWS DEMOGRAPHICS (N=132)**

| PEP Categories<br>(NO <sub>3</sub> -N) | Total Population<br>%<br>(n= 1,991,996) | White, Non-<br>Hispanic %<br>(n= 1,495,119 ) | Hispanic/Latino<br>%<br>(n= 213,316) | People of Color<br>%<br>(n= 431,532) |
|----------------------------------------|-----------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|
| PEP low<br>(< 5 mg/L)                  | 1,972,609 (99.03)                       | 1,483,205 (99.20)                            | 206,437 (96.78)                      | 423,313 (98.10)                      |
| PEP medium<br>(5 to 10 mg/L)           | 19,387 (0.97)                           | 11,914 (0.80)                                | 6,879 (3.22)                         | 8,219 (1.90)                         |
| PEP high<br>(> 10 mg/L)                | (0) 0.00                                | 0 (0.00)                                     | (0) 0.00                             | (0) 0.00                             |



 Hispanic residents and people of color have greater exposure to nitrate concentrations 5-10 mg/L than the total population.

### **ANALYSIS 2: NITRATE & SOCIAL FACTORS**

#### LINEAR REGRESSION WITH BETA COEFFICIENTS, (95% CIs), AND LEVELS OF SIGNIFICANCE

| Variables                                                        | Model A                            | Model B               | Model C               |
|------------------------------------------------------------------|------------------------------------|-----------------------|-----------------------|
| Constant                                                         | 0.42 (0.12 to 1.51)                | 0.33 (0.086 to 1.26)  | 3.46 (0.82 to 14.5)** |
| Hispanic (%)                                                     | 1.03 (1.01 to 1.57)*               |                       |                       |
| <sup>a</sup> White (non-Hispanic)                                |                                    |                       | 0.98 (0.97 to 1.00)** |
| People of Color                                                  |                                    | 1.03 (1.01 to 1.04)** |                       |
| Home Ownership rate                                              | 0.98 (0.96 to 1.00)                | 0.98 (0.96 to 1.00)   | 0.98 (0.96 to 1.00)   |
| Groundwater                                                      | 1.99 (1.37 to 2.88)**              | 2.07 (1.44 to 3.00)** | 2.05 (1.42 to 2.97)** |
| Small System                                                     | 1.79 (1.21 to 2.63)**              | 1.80 (1.22 to 2.67)** | 1.80 (1.22 to 2.67)** |
| Equation 1: $lnnitrato = \beta \pm \beta$ (Hisnanic) $\pm \beta$ | (home ownership)+B (groundwater)+B | (small)+c             |                       |

Equation 1: Innitrate= $\beta_0 + \beta_1$  (Hispanic)+ $\beta_2$  (home ownership)+ $\beta_3$  (groundwater)+ $\beta_4$  (small)+ $\epsilon$ Equation 2: Innitrate= $\beta_0 + \beta_1$  (People of Color)+ $\beta_2$  (home ownership)+ $\beta_3$  (groundwater)+ $\beta_4$  (small)+ $\epsilon$ Equation 3: Innitrate= $\beta_0 + \beta_1$  (White, non-Hispanic)+ $\beta_2$  (home ownership)+ $\beta_3$  (groundwater)+ $\beta_4$  (small)+ $\epsilon$ 

| Hispanic & people of color residents                       | Gro |
|------------------------------------------------------------|-----|
| <ul> <li>Each 1% increase in Hispanic residents</li> </ul> |     |
| is associated with a 3% increase in                        | (   |
| nitrate concentrations.                                    | t   |
| System size                                                | SE  |
| Among smaller systems, average                             | •   |
| nitrate was 80% higher than larger                         |     |
| systems.                                                   | ſ   |

#### roundwater

Average nitrate concentrations among groundwater systems was 99% higher than non-groundwater systems.

#### ΞS

Home ownership did not have a statistically significant association with nitrate in all three models.

### LIMITATIONS

- Small sample size
- Units (mg/L) lost in log-transformed linear regression model
- Limited data on the racial/ethnic demographics of residents served by MHPs and very small systems

#### **CWS and SOCIAL DISPARITIES**

- Increases in CWS average nitrate concentrations is associated with the proportion of Hispanic residents and people of color
- MHPs and small systems have higher average nitrate concentrations than other types of CWSs and larger systems
- Agriculture land increases the odds of a system having ≥5 mg/L average nitrate concentrations.



### **POLICY IMPLICATIONS**

#### **Environmental Justice Research Opportunities**

- Increase data collection of MHP systems and small systems (demographics, household water insecurity surveys, infrastructure assessments)
- Build knowledge of MHP infrastructure risks, including MHP customers of water utilities
- Improve accessibility of MHP data





### **POLICY IMPLICATIONS**

### **Racially Equitable Solutions in Water Policy**

- Include residents of MHPs and small systems, low SES communities and people of color in water management strategies
- Develop anti-racist and culturally inclusive resources
- Consider the inequities presented in this research as a potential threat to a community's capacity to prepare for and recover from climate events and public health emergencies

Hold a water insecurity summit in Oregon

Develop an Oregon drinking water disparities framework to outline how the natural environment, built environment and sociopolitical environment drive drinking water disparities within the household, community, county and state level

# Thank you



Environmental Public Health Cordelia Schimpf & Curtis Cude

