Code Red: Climate Changes Health and Equity

Natasha DeJarnett, PhD, MPH
Assistant Professor of Environmental Medicine
Envirome Institute
University of Louisville
➤ @DrDeJarnett

Christina Lee Brown Envirome Institute

Natural: everything that is not man-made like the weather, mountains and rivers, and plants and animals.

Social: how we organize ourselves into a society and build communities.

Personal: the lives we to build for ourselves, where we live, what we eat, and behaviors including exercise or smoking.

Riggs, DW, Yeager, RA, & Bhatnagar, A. (2018). Defining the human envirome: an omics approach for assessing the environmental risk of cardiovascular disease. Circulation research, 122(9), 1259-1275.

https://enviromeinstitute.org

Climate change is the greatest threat to human health.

HUMANS, YOU'RE ENDANGERED TOO.

_OUISVILLE.EDU

Climate Change is Inherently Local

⁴⁴Impacts are experienced differently within segments of the population and between geographic locations based on biological, social, and economic vulnerabilities as well as the nature of the climate hazard.³⁷ (Patz and Thomson, 2018)

Compounding Global Emergencies

⁴⁴Across the US, climate change and COVID-19 are playing out in tandem.

The warming planet drives increasingly extreme weather, compounding the pandemic's impacts and complicating disaster response.

At the same time, these dual threats have exposed the profound inequities that divide and weaken us."

Dr. Jalonne White-Newsome, 2020

Source: https://nextcity.org/daily/entry/rethink-resilience-for-the-era-of-covid-19-and-climate-change

COVID-19 Disparities

Ethnicity African Americans Age						
Latinx	Ŭ	Socioecono	omic status			
Native Americans	Older adults		He	ealth status		
		Low income	He Dia Ot	eart Disease abetes her chronic illnesses		
Rate ratios compared to Caucasians	American India Alaska Native	an or	Asian	Black or African American	Hispanic or Latino	
Cases	1.8x		0.6x	1.4x	1.7x	
Hospitalization	4.0x	~	1.2x	3.7x	4.1x	
Death	2.6x		1.1x	2.8x	2.8x	

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-race-ethnicity.html

Climate Change Multiplies Health Threats

The World Health Organization estimates that 88% of the global burden of climate change falls on children younger than 5 years old.

Children are Uniquely Vulnerable

Image source: https://bit.ly/2Fk3uth

It's Not Just Physical Health

Climate change threatens mental wellness: Stress Anxiety **PTSD** Depression Violence Suicide **Medication** interaction

Climate Threats to Health and Equity

Air Quality Heart Disease **EXPOSURES** HEALTH OUTCOMES Poor air quality Allergies Asthma **Air Pollution** Extreme exposure can Heat harm human 22 G health and wellbeing School/Work Kidney Mental Wildfire Allergens Disease Health Absences Smoke

Redlining and Air Quality

Modern air pollution disparities in historically redlined areas

Lane et al. 2022

Redlining and Air Quality

HOLC risk grade A B C D

 Emergency department visit rate (per 10000)

 □
 <29</td>
 □
 29-42
 □
 42-58
 □
 58-77
 >77

Nardone et al., 2020

COVID-19 and Air Quality

Fig 1: Maps show (a) county-level 17-year long-term average of PM2.5 concentrations (2000-2016)

COVID-19 fatality rates

Contributing socioeconomic, racial & environmental factors:

- Structural racism
- Crowded living conditions, multi-generational homes
- Limited access to health care and healthy foods
- Working in low paying "essential" jobs
- Chronic exposure to air pollution

Brandt, Beck, Mersha, 2020

COVID-19 risk factors

· Serious heart conditions

Chronic kidney disease

Chronic liver disease

· Chronic lung disease

Severe Asthma

• COPD

· Living in nursing home

pulmonary hypertension

Immunocompromise (cancer...)

• Age > 65

Sex (male)Severe obesity

Diabetes

News Releases from Headquarters > Enforcement and Compliance Assurance (OECA)

EPA Announces Enforcement Discretion Policy for COVID-19 Pandemic

03/26/2020

Contact Information: Press Office (press@epa.gov)

WASHINGTON (March 26, 2020) - The U.S. Environmental Protection Agency (EPA) is mindful of the health and safety of the public, as well as our staff, and those of Federal Agencies, State and Local Governments, Tribes, Regulated Entities, Contractors, and Non-governmental Organizations during the COVID-19 pandemic. The agency is taking these important considerations into account as we all continue our work to protect human health and the environment. Accordingly, EPA is announcing a temporary policy regarding EPA enforcement of environmental legal obligations during the COVID-19 pandemic.

EPA's temporary enforcement discretion policy applies to civil violations during the COVID-19 outbreak. The policy addresses different categories of noncompliance differently. For example, under the policy EPA does not expect to seek penalties for noncompliance with routine monitoring and reporting obligations that are the result of the COVID-19 pandemic but does expect operators of public water systems to continue to ensure the safety of our drinking water supplies. The policy also describes the steps that regulated facilities should

Source: https://www.epa.gov/newsreleases/epa-announces-enforcement-discretion-policy-covid-19-pandemic

Preview of Results

- Being in a county with 6 or more TRI sites after the EPA's rollback (compared to counties with 1 to 5 TRI sites) results in:
 - 13 percent more PM2.5 pollution (about 0.8 ug/m3)
 - Increases in ozone (5% increase) and PM10 (15% increase) as well
 - A 38.8 percent increase in daily cases of COVID-19
 - A 19.1 percent increase in deaths from COVID-19
 - The effects of air pollution on COVID-19 cases and deaths are worse in counties with a higher percentage of Black individuals (a 26.1 percent increase in daily deaths vs a 4.4 percent increase).
 - This suggests that the burden of pollution exposure is unequal and might underly the racial disparities in COVID outcomes.

TRI = Toxic Release Inventory Courtesy: Persico, American Lung Association Webinar July 2020

_OUISVILLE.EDU

TRI = Toxic Release Inventory Courtesy: Persico, American Lung Association Webinar July 2020

LOUISVILLE.EDU

Counties with 6 or more TRI sites saw bigger increases in deaths than counties with fewer TRI sites after the rollback

TRI = Toxic Release Inventory Courtesy: Persico, American Lung Association Webinar July 2020

TRI = Toxic Release Inventory Courtesy: Persico, American Lung Association Webinar July 2020

_OUISVILLE.EDU

Climate Adaptation

Source: https://louisville.edu/greenheart

Extreme Heat

Heat is the top cause of natural weather-related death in the US. (NOAA 2017)

Image sources: https://bit.ly/3wqTIx9, https://bit.ly/3oBkTCo, https://bit.ly/3f4U72p

1995 Chicago Heat Wave

Source: https://www.chicagonow.com/chicago-weather-watch/2015/07/heat-wave-1995/

Source: https://static.abcotvs.com/wls/images/cms/071519-wls-cooked-4p-thumb-img.jpg

1995 Chicago Heat Wave

USVILLE EDU

Extreme Heat

TABLE 2. Number and rate of heat-related deaths,* by race/ethnicity and level of urbanization — United States, 2004–2018[†]

Characteristic	No. of deaths (rate) §
Race/Ethnicity [¶]	
Hispanic	1,349 (0.2)
American Indian/Alaska Native, non-Hispanic	241 (0.6)
Asian/Pacific Islander, non-Hispanic	194 (0.1)
Black, non-Hispanic	1,965 (0.3)
White, non-Hispanic	6,602 (0.2)
Not stated**	176 (N/A)
Level of urbanization ^{††}	
Large central metro	4,402 (0.3)
Large fringe metro	1,607 (0.1)
Medium metro	1,764 (0.2)
Small metro	990 (0.2)
Micropolitan	879 (0.2)
Noncore	885 (0.3)
Total	10,527 (0.2)

Vaidyanathan et al., 2020

Differences in Heat-related Mortality by Citizenship Status: United States 2005-2014

Estimated Percentage of Heat-related Deaths by Citizenship (2005-2014)

APHA, 2018 Taylor et al., 2018

Redlining and Heat

■A

■B

DC

D

∎A

■B

^DC

D

Hoffman et al, 2020

Urban Heat Island

Urban Heat Island Effect in Louisville

Climate Central, 2014

Extreme Heat Adaptation

Table I. Research Findings Related to Strategies to Cool Dryland Cities.				
Category	Finding (Study Cities in Parentheses)	Authors		
Vegetation	Trees have greater daytime cooling benefit than lawns (Phoenix) Lawns can increase daytime air temperatures and humidity compared to	Wang et al. (2016) Potchter, Cohen, and Bitan (2006)		
	surrounding urban areas (Tel Aviv)			
	Irrigated turf leads to lower air temperatures than desert vegetation (Phoenix)	Hall et al. (2016)		
	Tree canopy has strong cooling benefits in daytime but not at night (Tel Aviv and Cairo)	Cohen, Potchter, and Matzarakis (2012); Mahmoud (2011); and AboElata (2017)		
	Tree canopy has only small air cooling benefit on very hot days (Athens)	Tsiros (2010)		
	At night dense, low tree canopies decrease wind and increase air temperatures and humidity (Tel Aviv)	Potchter, Cohen, and Bitan (2006)		
	Tree canopies that leave sky view can increase nighttime cooling (Cairo)	AboElata (2017)		
	Total area of vegetation matters more than distribution (Denver)	Rhee, Park, and Lu (2014)		
	Clustered vegetation cools surface temperatures more than dispersed vegetation (Phoenix and Las Vegas)	Fan, Myint, and Zheng (2015) and Myint et al. (2015)		
	Parks in dryland cities typically produce park cool island effects	Bowler et al. (2010)		
	The cooling impact of parks extends well beyond their borders	Dimoudi and Nikolopoulou (2003) and Akbari et al. (2016)		
Built form	Shade-producing built form (close buildings with narrow streets) can cool dryland cities	Emmanuel and Fernando (2007) and Nassar et al. (2016, 2017)		
	Street canyons (narrow streets and tall buildings) reduce daytime air temperatures through shade and reduced sky view	Johansson (2006)		
	Street canyons lead to warmer nighttime temperatures since heat escapes more slowly with reduced sky view	Nassar, Blackburn, and Whyatt (2016, 2017) and Jamei et al. (2016)		
	Replacing pavement with buildings leads to lower nighttime temperature (Phoenix)	Gober et al. (2012)		
	The roughness of urban landscapes leads to less wind and more heating	Golden (2004)		
	Tall buildings and straight streets can promote air flow and redirect wind	Golany (1996)		
Materials	Cool roof materials reduce urban heating in all climate zones	Roman et al. (2015) and Santamouris (2014)		
	Phase change materials can spread heating out through the daily cycle	Roman et al. (2015)		
	Highly reflective surfaces may heat other spaces nearby	Vardoulakis, Karamanis, and Mihalakakou (2014)		

Extreme Heat

Educate

- Disseminate alerts
- Assure cooling center access

Wheeler et al. 2019

Image sources: http://www.realclearlife.com/nature/striking-images-hurricane-harvey-devastates-gulfcoast/#1, https://images.fatherly.com/wp-content/uploads/2017/08/hurricane-harvey-1.jpg

USGCRP, 2018

Source: https://www.britannica.com/event/Hurricane-Katrina

Extreme Weather Adaptation

Wu et al., 2019

Extreme Precipitation

Water contamination

Community destruction

Gastrointestinal illness

Injury, death

Precipitation extremes harms **physical and mental health**, community infrastructure, and the economy.

Decreased crop yield

Wildfires

Malnutrition

Asthma, heart disease

Extreme Precipitation - Drought

Drought	Impoverished	Food and water insecurity
Health	Agricultural Workers	Economic and mental health impacts
Equity	Rural Communities	Reliant on small or private drinking water systems
	Tribal Communities	Close ties to land and some communities lack running water
	Chronic Illness	Exacerbate kidney disease, diabetes, and hypertension
	Race and Ethnicity	Heightened economic threat

APHA, PHI, CDPH, 2018

Extreme Precipitation - Flooding

Image sources: https://www.wkyt.com/content/news/Summer-storms-down-trees-flood-roads-in-parts-of-central-Kentucky-384184001.html

Extreme Precipitation

Hawkesbury City Council, 2012; UFCOP, 2017

Vectorborne Disease

Image sources: https://bit.ly/3f4XF4L, https://bit.ly/2RqWBPL, https://bit.ly/3bEMQ7q

_OUISVILLE.EDU

Vectorborne Disease

Figure Source: Center for Disease Control and Prevention, 2018.

Salas, Knappenberger, Hess, 2018

Vectorborne Disease Adaptation

Thank You!

Natasha DeJarnett, PhD, MPH, BCES

Assistant Professor Envirome Institute University of Louisville Natasha.DeJarnett@louisville.edu DrDeJarnett

